MOSFET/IGBT DRIVER

PS105F6A-07W21

LENTARK

FEATURES

- Π Easy-To-Use Interface.
- ☐ Wide Input Supply Voltage Operating Range: 9V-18V
- ∏ High Peak Output Current: 6A
- Π Low Output Impedance: 2.5 Ω
- ☐ Low Output Voltage Swing: 0 25mV
- ∏ High Capacitive Load Drive Capability: 10.000 pF
- ∏ High-Speed Charging: 28 ns 2.500 pF Load 12V Charge
- ☐ Wide Output Frequency Operating Range: 4 Hz 1 MHz
- Π Ramp Transition Feature: 200 ms 25 s

APPLICATIONS

- ∏ P & N Channel MOSFET, IGBT Switching.
- ∏ H Bridge & Half Bridge Drivers.
- Π Switch-Mode Power Supplies.
- ☐ High Voltage Transformer and Pulse Transformer Drivers.
- Π Class D Switching Amplifiers.
- Π R, L and/or C Load Control.
- Π Hobby.

GENERAL DESCRIPTION

PS105F6A-07W21 is a MOSFET and IGBT gate driver device with 9-18V operating voltage and two outputs with maximum current capacity of 6A(Peak). One of the two outputs is inverted and the other is non-inverted. With Amplifier modules and driver design used in circuit board, the capacitive load on the gate terminals of MOSFETs and IGBTs quickly charges with a six-amperage peak current. (12V - 28 ns - 2.5 nF). In this way, higher current levels can be controlled without switching distortions at higher frequencies.

The control mechanism is very useful and user friendly. All the control operations are carried out with a rotary encoder at the upper right of the circuit board. Each change is saved in the internal memory of the device. For detailed information on how to use control procedures, see **Description with Image**.

DESCRIPTION WITH IMAGE

Image 1: Display of Pin Inputs/Outputs and Control Input.

Pin	Description	Note
Rotary Encoder	It is used to select the	1) Short press and release on it: Select the next configuration.
Control Input	configuration and to change its	2) Keeping it pressed for a long time [1.5 seconds]: If the ramp
	value.	transition is active, it stops. If the ramp transition is not active and
		the transition time is specified, it starts ramp transition.
		3) <u>Turning clockwise:</u> Increases the value of the selected
		configuration.
		4) <u>Turning counterclockwise:</u> Decreases the value of the selected
		configuration.
12V	9-18V Supply Input	Nominal 12V
GND	GND	-
!PWM Output	Inverted PWM Output.	_
PWM Output	PWM Output.	_

Table 1: Pin Configurations

INTRODUCING THE INDICATOR SCREEN

1 21.0 KHz 50.00% 1 Th							
No.	Description	Note					
1	Cursor: Move the cursor over the value you want to change by pressing the button on the rotary encoder.	 Moving the cursor: Briefly press and release the button on the rotary encoder. Starting "Ramp Transition": Press and hold the button on the rotary encoder for a long time (1.5 seconds or more). Changing the value of the selected parameter: Turn the rotary encoder clockwise or counterclockwise. 					
2	Frequency Value: In the columns on the side, some examples are given for the frequency parameter on the screen.	50 Hz 2.5 KHz 10.0 KHz	635 Hz 5.815 KHz 200.0 KHz				
3	Duty Cycle Value: In the columns on the side, some examples are given for the duty-cycle parameter on the screen.	0.00% 20.20% 85.99%	0.01% 50.00% 100.00%				

Rev. 20.02.2020 || Lentark®, 2020 Page 2/6

4	Increase and Decrease Sensitivity:		Frequency Change	Duty Cycle Change			
	The adjacent columns show which	XØ	1 Hz	0.01%			
	intervals you can select in the signal parameters for each sensitivity value	X1	10 Hz	0.1%			
	to be selected.	x 2	100 Hz	1%			
	NOTE: For detailed information about the resolution, see the	*3	1 KHz	10%			
	"Tolerance and Resolutions" section of the Electrical Characteristics table.	ж4	10 KHz	10%			
		X5	100 KHz	10%			
5	Operating mode: The device has three operating	INS	<u>INS</u> TANT: When this operating mode is selected changes you make to the signal parameters are instantly processed into the signal.				
	modes. These; 1- INS: Every change you	LTN	<u>LATEN</u> CY: When this operating mode selected, changes you make to the signal parameters are				
	make is instantly processed into the signal.	4 7	processed into the signal after a short time (50ms) after the angular reader is immobile. With this operating mode selected, you can perfor				
	2- LTN: The changes you make are processed into the signal after a short time when the angular reader is stationary.	1.25	"Ramp Transition". The changes you make in the signal parameters are kept in memory, but the signal is not processed, these values are perceived as the targeted parameters. The expression "1.2s" refers to the total duration of the ramp transition, which will start at your signal values and end at the values you specify as target. You can start the "Ramp Transition" after setting target value in the frequency parameter and / or operating ratio parameter and selecting the total time. (By holding and holding the rotary encoder for a long time. See: Table 1.)				
	3- 3 s: It is the operating mode where you can do ramp transitions. You have to specify the total time of the ramp, the target frequency parameter and / or the duty cycle parameter.						
	You can then start the "Ramp Transition".	1	values, you can				
		 Between and values, you can choose at intervals of 500 milliseconds. Between and values, you can values, you can choose at intervals of 1 seconds. Between and values, you can value value values, you can value values, you can value value values, you can value values, you can value values, you can value value values, you can value value values, you can value va					
	choose at intervals of 2.5 seconds.						

Table 2: *Introduction of Display.*

For each change made on the Display, the device starts a series of mathematical operations and is shown on the display in 50 ms by calculating the configuration closest to the desired value to the resolution values of the device. For more information on resolution values, see **Electrical Specifications**.

Note: Each change is saved in the internal memory of the device. thus, it does not require reconfiguration on each run. **Note:** You can change the display brightness with precision-tuned resistance on the left side of the circuit board below the display.

ELECTRICAL SPECIFICATIONS

∏ Pushing the device to operate above the "Max." listed in the table below may cause the device to overheat and to take up permanent damage. It is inconclusive that the device will function beyond the operating limits as set out in this technical document. Prolonged exposure to work under "maximum" rating conditions may affect device reliability.

Table 3: *Electrical Specifications.*

Conditions: Unless Otherwise Noted, $T_0 = +25^{\circ}C$ and $9V \le V_{IN} \le 18V$.									
Parameters	Sym	Min		Тур	Max		Units	Condition	
Input									
Input Voltage	V_{IN}	9		12	18		V	DC	
Input Current	I_{IN}	_		0.2	0.3		A	f = 1 KHz	
			0.3	0.5			f = 1 MHz		
Output									
Output Voltage, High	oltage, High $V_{OUT,HIGH}$ $V_{IN} - 0.025$ V_{I}		V_{IN}	$V_{IN} + 0.025$		V	DC		
Output Voltage, Low	$V_{OUT,LOW}$	0		0	0.025		V	DC	
Output Resistance, High	$R_{OUT,HIGH}$	_		2.1	2.8		Ω	$V_{IN} = 18V$	
Output Resistance, Low	$R_{OUT,LOW}$	_		1.5	2.5		Ω	$V_{IN} = 18V$	
Peak Output Current	I_{PK}	_		6	_		Α	$V_{IN}=18V$	
Latch-Up Protection	I_{REV}	_		>1.5	_		Α	Duty: 2%	
Withstand Reverse Current								$f \ge 3 KHz$	
Switching									
Rise Time	t_R	_		28	50		ns	$C_L = 2.5 \text{ nF}$	
Fall Time	t_F	_		28	50		ns	$V_{IN} = 12V$	
Output Power Dissipation	W_{PD}	_		300	730		mW	Note 1	
	Tole	rance & F	Reso	lution					
Parameters	Min	Тур	Max		Units	Condition			
Frequency Tolerance	_	_	0.2		%	$4 Hz < f_{Out} < 1 MHz$			
Frequency Sensitivity	y Sensitivity – 0.0312 –		_	μs	$T \geq 1 \mu s$				
Frequency Resolution	nency Resolution 0.001 0.001 0.001		0.001	KHZ	$4 Hz \le f_{Out} \le 5 KHz$				
(4 Hz – 1 MHz)	0.001	0.002	0.003			$5 KHz < f_{Out} \le 10 KHz$		≤ 10 <i>KHz</i>	
	0.003	0.02	0.076		10 K		$KHz < f_{Out} \le 50 \ KHz$		
	0.07	0.18		0.30		50 K		$KHz < f_{Out} \le 100 \ KHz$	
	0.3	0.5		1		100 F	$KHz < f_{Out} \le 200 \ KHz$		
	1	5	7			$200 KHz < f_{Out} \le 500 K$		$t \le 500 KHz$	
	7	10	17			$500 \ KHz < f_{Out} \le 750 \ KHz$			
	17	20	30			$750 \ KHz < f_{out} \le MHz$			
Duty Cycle Resolution	0.01	_		0.01	%	$4 Hz \le f_{Out} \le 3.2 KHz$			
(0,00 – 100,00)	0.01	_		0.1	[percent]	$3.2 \ \textit{KHz} < f_{Out} \leq 32 \ \textit{KHz}$			
	0.1	_	1 3.125			$32 \text{ KHz} < f_{Out} \le 320 \text{ KHz}$ $320 \text{ KHz} < f_{Out} \le 1 \text{ MHz}$			
	1	_							

Note1: Power consumption is directly related to Total Gate Charge $[Q_g]$ and Total Input Capacitance[pF] of the MOSFETs and/or IGBTs group to be controlled. See: **Figure 1, 2, 3 and 4**.

Note: Application areas with intense magnetic and electric field changes, it will be useful for both your application and device that the device and the trigger signal are not exposed to harmful effects of the environment, the surface prepared for assembly is grounded and the transmit the signal via a grounded cable.

MAXIMUM RATINGS AND SAFE OPERATION AREA

Diagram 1: Sample Test Circuit.

Information: The C_{iis} , Input Capacitance, mentioned in the test results presented below is the Total Input Capacitance of the MOSFETs and IGBTs used at V_{CS} =0, V_{DS} =±25V, f=1.0MHz. Q_g , Total Gate Charge, The Total Gate Charge of the MOSFETs and IGBTs used at V_{GS} =±10V, I_D =0.8 I_{Dmax} V_{DS} =0.8 V_{DSmax} .

Warning: MOSFETs and IGBTs that will be used in a way that does not exceed the maximum output power of the device should be placed in accordance with the mentioned characteristics [Note1] of the appropriate gate resistance. Operating the device outside the safe area as shown in the illustration may cause the device to overheat and to cause permanent damage.

Rev. 20.02.2020 || Lentark®, 2020

PRODUCT CODE

TECHNICAL DRAWING

CONTACT INFORMATION:

Lentark Electronics

Website : www.lentark.com E-mail : info@lentark.com

Rev. 20.02.2020 || Lentark®, 2020 Page 6/6